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Abstract— Walkingdisorders are common in post-stroke.
Body weight support (BWS) systems have been proposed
and proven to enhance gait training systems for recovering
in individuals with hemiplegia. However, the fixed weight
support and walking speed increase the risk of falling and
decrease the active participation of the subjects. This paper
proposes a strategy to enhance the efficiency of BWS tread-
mill training. It consists in regulating the height of the BWS
system to track the height of the subject’s center of mass
(CoM), whereby the CoM is estimated through a long-short
term memory (LSTM) network and a locomotion recognition
system. The LSTM network takes the walking speed, body-
height to leg-length ratio, hip and knee joint angles of the
hemiplegic subjects’ non-paretic side from the locomotion
recognition system as input signals and outputs the CoM
height to a BWS treadmill training robot. Besides, the hip
and knee joints’ ranges of motion are increased by 34.54%
and 25.64% under the CoM height regulation compared to
the constant weight support, respectively. With the CoM
height regulation strategy, the stance phase duration of the
paretic side is significantly increased by 14.6% of the gait
cycle, and the symmetry of the gait is also promoted. The
CoM height kinematics by adjustment strategy is in good
agreement with the mean values of the 14 non-disabled
subjects, which demonstrated that the adjustment strategy
improves the stability of CoM height during the training.

Index Terms— Body weight support, center of mass
height, locomotion recognition, long-short term memory,
post-stroke.

I. INTRODUCTION

AROUND 15% of the global population is disabled,
according to the World Health Organization (WHO),
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and more than six million people die each year because of
stroke [1]. Amongst other pathologies, walking dysfunction
is a major problem for many subjects who have suffered
a stroke [2]–[4]. Walking disorders can lead to falls and
restrict the stroke patient from performing daily living activ-
ities. Therefore, a primary objective of stroke rehabilitation
in clinical practice is to improve independent walking [5].
To date, a clinical study that includes several meta-analyses
of controlled randomized trials indicates that a variety of
motor rehabilitation strategies such as electromechanical gait
trainers, partial body weight supported treadmill training, and
speed-dependent treadmill training are beneficial for achiev-
ing gains in walking speed and distance when compared to
overground walking training [6]. There is emerging evidence
that intensive, repetitive, and task-oriented training can reduce
neurological deficits, which leads to short- and long-term corti-
cal reorganization [7], [8]. Effective treadmill walking training
can speed up the process of nerve remodeling for post-stroke
patients [9], [10]. However, patients’ motion control on lower
limb joints is not effective due to the unstable muscle strength
of one side of hemiplegia, which results in the difficulty of
achieving repetitive walking training.

For the past few years, body weight support (BWS) systems
have been proposed and proven to enhance gait training
systems for patients recovering from spinal cord injury or
stroke [7], [11]–[13]. Treadmill training is a promising treat-
ment strategy because it allows the repetitive practice of
complex gait cycles [14]. It is postulated to benefit locomotion
by enhancing repetitive stepping practice and task-specific
training, when compared to traditional overground training
sessions supervised by physiotherapists [15]. Manual treadmill
training conducted by physiotherapists has been demonstrated
as an effective rehabilitation treatment for improving the gait
speed and walking distance for stroke patients. The conven-
tional BWS treadmill training requires a team of three or more
physical therapists to guide the patient’s legs on predefined
paths and to stabilize the patient’s pelvis [16]. The quality
of manually assisted BWS treadmill training is dependent
on the therapist’s experience and judgment, which varies
widely amongst therapists [17]. Also, the training sessions are
short due to the physical therapist’s fatigue and do not have
any proper method of recording the patient’s progress, and
recovery [18].

Automated rehabilitation solutions are investigated lately
to overcome the above-mentioned shortcomings of manual
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physical therapy [19]. More specifically, robot-assisted gait
training is used to counteract gait disorders in recent years
[3], [20]. In clinical practice, robots such as the Lokomat
(Hocoma, Volketswil, Switzerland) [21], Gait Trainer GT II
(Reha Stim, Berlin, Germany) [22], Lyra (Thera Trainer,
Hochdorf, Germany) [23], [24] and KineAssist (Woodway,
Waukesha, America) [24] are used for BWS treadmill training.
The benefit of these treadmill training systems is twofold:
(1) the robot’s BWS system carries the patient’s weight, and
(2) the gait pattern is induced by a specific robot strategy that
releases the therapists from physical labor. Patients receiving
electromechanically assisted gait training in combination with
post-stroke physiotherapy are more likely to recover inde-
pendent walking than patients receiving gait training without
these devices [22]. Despite the benefits of robot-assisted gait
preparation, this therapeutic approach often presented some
disadvantages. The system of BWS partly reduced muscle
function and restricted the degrees of freedom of the leg and
pelvis movement, leading to abnormal changes in the patterns
of muscle activation [25]. Optimization of robot-assisted reha-
bilitation devices is essential in overcoming the disadvantages
mentioned above.

Novel robotic techniques, such as the biofeedback mode
of the Lyra [23], the released mode of the Lokomat [22],
the modification of the guiding force, and the active-assistive
mode of the G-EO [22], strive to promote healing by enabling
the subject to effectively control the robot-assisted gait train-
ing using their residual muscle movement. Another effective
approach for the BWS treadmill training is varying the BWS
harness height with a predefined trajectory that is determined
by the ratio between the lower limb length and the height
of the stroke subjects [6]. Post-stroke subjects with hemiple-
gia can be trained by their own active movement consider-
ing the contralateral side’s motion information because the
lower extremity of their non-paretic side maintains walking
capability.

Human gait consists of a repeated sequence of basic limb
motions to move the body along the desired direction while
maintaining weight-bearing stability, conserving energy, and
absorbing the floor shocks. From a mechanical point of
view, the body can be represented by its center of mass
(CoM), whose trajectory describes how the whole body pro-
gresses/moves [2], [26]. The track of the CoM moving up
and down can improve patients’ active participation in BWS
treadmill training, which is a control method in line with
the physiology of human movement [27]. In addition to the
force interaction and electrical stimulation, the BWS harness
height adjustment strategy can be obtained from analyzing
movement information of the healthy side in real-time. To real-
ize the BWS training strategy based on the height of the
CoM, how to obtain the trajectory of the human CoM is a
priority issue to be solved. In [28], a quaternion was used in
combination with an integrated approach to transform transla-
tory accelerations of the CoM from an inertial measurement
unit (IMU) during walking from the object system onto the
global frame. A method was proposed for analyzing gait pat-
terns determined by CoM through inertial sensors embedded
in smart devices [29]. It employed an extended Kalman filter

in conjunction with a quaternion approach to transforming
accelerations from the object onto the global frame.

In this paper, a strategy for variable CoM height adjustment
is proposed to enhance the efficiency of BWS treadmill train-
ing of hemiplegic patients after stroke. Taking the kinematic
information of the hemiplegic patients’ non-paretic side as
the main input parameters for the CoM height adjustment
would improve the patients’ training participation. The hip and
knee angles are calculated by a locomotion recognition system
with five IMUs. The non-paretic side’s kinematic information
of the subjects is used for the CoM height estimation, and
the paretic side’s information is utilized for rehabilitation
evaluation. The CoM height estimation algorithm is applied
to a BWS treadmill training robot (NaturaGait, Shanghai
Electric, China) as shown in Fig. 1. NaturaGait is mainly
used for rehabilitation of individuals with lower limb dysfunc-
tion caused by motor nerve injury, cerebral injury, especially
stroke. The CoM height of the BWS treadmill training robot
is calculated by parameters from the subject’s lower limbs.
With the adaptive CoM height estimation strategy, the stroke
patients can participate in the BWS treadmill training actively
adapting to the walking speed.

The existing method using CoM focused mostly on the
ratio of body weight for vertical impedance, adjusting the
CoM height in BWSTT based on CoM height estimation
for post-stroke rehabilitation has not been investigated. The
contribution of this work is twofold: first, we proposed a
method for CoM height estimation by lower limb kinematics.
Second, we validated the effectiveness of adaptively adjust-
ing the CoM height based on the active movement of the
non-paretic side for the BWS treadmill training in post-stroke
rehabilitation. The long short term memory (LSTM) neural
network integrated with CoM estimation using periodicity
information solves the gradient disappearance or explosion
of the recurrent neural network (RNN), improves the net-
work’s ability to process long sequence data, and serves as
a powerful tool for parameter prediction in the BWS treadmill
training. The proposed strategy in BWS treadmill training for
post-stroke patients using non-paretic lower limb kinematic
information is able to provide a more precise and robust CoM
height estimation for use in rehabilitation.

II. MATERIALS AND METHODS

For patients with hemiplegia, the motor function of the
healthy side is preserved. Therefore, to assist post-stroke
patients in BWS treadmill training, the healthy side movement
is treated as the reference expression of the active movement
and is used to identify the patient’s intention to move. Then,
the mapping relationship between the kinematic information
of lower limbs and the change of CoM height is established
and used to dynamically adjust the upper and lower positions
of the pelvic elevator during treadmill walking training.

A. Locomotion Recognition System

1) IMUs Mounting Position and Orientation: The locomotion
recognition system integrates five IMUs (LPMS-ME1, Alubi,
China), two of them are attached to the healthy side while
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Fig. 1. System Overview of the adaptive CoM height adjustment strategy. The strategy consists of a locomotion recognition system, a center
of mass (CoM) height estimation algorithm, and a BWS treadmill training robot. The CoM height estimation algorithm takes the walking speed,
body-height, leg-length ratio, hip and knee joint angles of the hemiplegic subjects’ non-paretic side from the locomotion recognition system as input
signals and outputs the CoM height to a BWS treadmill training robot for rehabilitation training.

Fig. 2. Visualization of the IMUs coordinate systems and the global
coordinate system. The locomotion recognition system consists of five
IMUs, of which one is attached to the waist. Two IMUs are attached to the
healthy side for CoM height estimation, and the other two are attached
to the paretic side for motion assessment. IMUs on the left side and right
side are arranged symmetrically.

one is attached to the waist for CoM height estimation, and
the other two are attached to the paretic side for motion
capture and rehabilitation assessment, as shown in Fig. 2. The
quaternions are collected from the IMUs at a sampling rate
of 100 Hz. The global coordinate system (XG, YG , ZG ) is
defined so that the x-axis lies in the horizontal plane and
points to the right of the subject, while the z-axis points
upwards. The waist IMU is located on the back of the pelvic.
The z-axis of the IMU, ZT , is aligned along the direction
of the upward lumbar, and the x-axis, XT , is perpendicular to
the sagittal plane of the subject. On the right side of the lower
limbs, the thigh IMU is placed on the outer and middle height
of the thigh. The z-axis of the thigh IMU, Z H R , is aligned
along the direction of the upward femur, and the x-axis, X H R ,
is perpendicular to the sagittal plane of the subject. The shank

IMU is placed on the outer and middle height of the shank. The
z-axis of the shank IMU, Z F R , is aligned along the direction
of the upward tibia, and the x-axis, X F R , is perpendicular
to the sagittal plane of the subject. Similarly, the two IMUs
on the left side are arranged symmetrically. Since the IMU
hardware is universally designed, the z-axis directions of the
left and right thigh IMU are opposite, as shown in Fig. 2. The
initialization posture of each IMU can be reset in a sensor
setup software, the z-axis direction is set according to the
wearing side is left or right.

2) Lower Limb Joint Angle Calculation: In the system ini-
tialization, the subjects were directed to keep their standing
posture for three seconds after wearing the detection device
for posture calibration and calculate the deviation attitude
joint angle through the calibration attitude data. The initial
calibration posture should be decoupled to obtain joint angle
in the subsequent motion calculation. In the rest of our work,
the whole calibration process does not require the use of
third-party motion capture equipment. We tested this method
with the third-party motion capture device by walking motion
analysis at the same time, the experimental results showed
that in addition to the individual attitude algorithm of angle
motion capture system are biased with a third party. Our
attitude detection system can meet the requirements in data
periodicity and joint angles for the CoM height estimation.
The initial relative posture between the IMU on the thigh and
femur, Ri

U H , and the relative posture matrix between the IMU
on the shank and tibia, Ri

L F , in the global coordinate system
can be described as

Ri
U H =

(
Ri

GU

)T
Ri

G H , Ri
L F =

(
Ri

G L

)T
Ri

G F (1)

where the subscript U and L represent the coordinate of
the IMU on the thigh and shank, respectively. The sub-
script H and F represent the coordinate of the femur and
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tibia, respectively, while the superscript i refers to the initial
configuration.

When the hip joint moves to a new position, n, the posture
of the femur and tibia in the global coordinate can be described
as

Rn
G H = Rn

GU Ri
U H , Rn

G F = Rn
G LRi

L F (2)

A unit quaternion q = [x, y, z, w]T can be obtained from
the IMU with a vector, (x, y, z), and a scalar, w,

q = x i + yj + zk + w (3)

The transpose of the femur rotation matrix in global coor-
dinates is expressed as

(Rn
G H )T =

⎡
⎣1−2

(
y2+z2

)
2(xy − wz) 2(wy + xz)

2(xy+wz) 1−2
(
x2+z2

)
2(yz − wx)

2(xz − wy) 2(wx +yz) 1−2
(
x2+y2

)
⎤
⎦ (4)

and the relative Euler angles, γ , β and α, between the
coordinates of femur and tibia pitch, roll, and yaw (joint
flexion/extension in the sagittal plane, adduction/abduction in
the frontal plane, and internal/external rotation).

Rn
G H = RZ (α)RY (β)RX (γ )

=
⎡
⎣ cαcβ cαsβsγ − sαcγ cos βcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

⎤
⎦ (5)

where cα and sα are the abbreviation of cosα and sinα,
respectively.

The joint flexion/extension in the sagittal plane, α, adduc-
tion/abduction in frontal plane, β, and internal/external rota-
tion, γ , are denoted by

α = Atan2 (r23/sβ, r13/sβ) (6)

β = Atan2

(√
r2

31 + r2
32, r33

)
(7)

γ = Atan2 (r32/sβ,−r31/sβ) (8)

where ri j are the elements of Rn
G H . The motion of hip and

knee joints in the sagittal plane are the main parameters for
the CoM height estimation, which is described in the next
subsection.

In this work, the accuracy problem is analyzed as common
works on motion capture which utilizes IMUs as wearable
sensors [30]. Firstly, the IMUs are placed at a designated
location on the waist, shank, and thigh of each subject. The
location error of sensors is treated as a systematic error as
it cannot be eliminated by initial calibration. Secondly, the
performance parameters, zero-point drift and temperature drift,
cannot be overlooked. The locomotion recognition system
calibration parameters need to be reset when it has been used
for more than 30 mins to avoid error accumulation.

B. LSTM for CoM Height Estimation

The nonlinear relationship between the healthy side data
and the center of gravity’s height in the whole gait cycle
is observed. Therefore, in the application process, the data
collected from the paretic side is mainly used as an evaluation
index. During human walking, the lower limb joint parameters

present obvious periodicity. Time domain’s correlation with
lower limb joint parameters is continuously changing. The
CoM height estimation algorithm needs the memory capac-
ity to process the time domain parameters and utilize the
historical information. An RNN, one category of artificial
neural networks wherein connections among nodes form a
directed graph along with a temporal series, is adapted in the
algorithm to showcase the temporal dynamic behavior of the
parameters [31].

Derived from feedforward neural networks, RNNs can
use their internal state (memory) to process variable-length
sequences of inputs. Whereas, there are two main problems
for RNN to estimate CoM height sequence with lower limb
joint parameters in continuous treadmill training, (1) gradient
vanishing and exploding problems, (2) it cannot process very
long sequences if using hyperbolic tangent (tanh) or rectified
linear unit (relu) as neural network activation function. This
work relies on a variation of RNN called LSTM to address
these challenges. The LSTM network adds thresholds input
gate, forget gate, output gate, and memory units, solves the
problem of gradient disappearance or explosion of the RNN,
improving the network’s ability to process long sequence
data [32]. The difference between LSTM and an ordinary
neural network is that the nodes between the hidden layers
are connected, i.e., the input of the hidden layer at the given
time not only contains the output of the hidden layer prior
to the given time but also includes the output of the same
hidden layer at the previous time. The historical information
of the time series is stored in the network hidden layer. The
LSTM can be used as a powerful tool to process sequence
data. Therefore, the LSTM network is utilized to process the
lower limb joint angles as they are time-series signals and is
selected as the regression parameter prediction model. Since
the lower limb joint angles we collect are a time-series signal,
the LSTM network can be utilized to process the lower limb
joint angles.

The LSTM advances traditional classifiers such as support
vector machines by capturing feature vectors conveniently and
automatically. Therefore, LSTM is selected as the regression
parameter prediction model. The input parameters include
angles of the hip and knee joint, real-time walking speed from
NaturaGait, and leg length ratio to height. The model output
of the LSTM is the predicted pelvis height, which is then
sent to NaturaGait for height lifting device position and speed
control.

The LSTM model for CoM height estimation is shown in
Fig. 3, where x is the input eigenvector of the current cell,
ht−1 is the output of the last cell, σ is the sigmoid function,
z f is the forget gate for information to be abandoned, ct

is the unit before the update, and the output value of f is
a real number between 0 and 1; 0 means to forget all the
information of the previous cell unit and one means to retain
all the information of the previous cell unit and input the
output value to ct−1. The information is discarded when the
input information passes through the forget gate. The input
gate consists of a sigmoid layer and a tanh layer. The sigmoid
layer is responsible for information that requires an update,
and the tanh layer is responsible for creating the vector of
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Fig. 3. Schematic diagram of neural network-based LSTM structure. The input layer (4,1) of the LSTM neural network includes leg-body height
ratio, walking velocity, hip and knee angles. The output of the LSTM neural network is the CoM height sequence (100,1) for robot trajectory planning.

the alternative update content. The calculation of input gate
and forget gate are defined as

zi = σ
(

W i (xt + ht−1) + bi

)
(9)

z f = σ
(

W f (xt + ht−1) + b f

)
(10)

After the information passes through the forget gate and
input gate, the old cell state ct−1 will be updated to ct as

ct = z f ct−1 + it (tanh (W (xt + ht−1) + b)) (11)

Then the output gate is integrated with a sigmoid layer
and a tanh layer. The sigmoid layer determines which input
information needs to be output. The tanh layer processes the
information of the cell state. The output gate combines the
sigmoid and tanh layer as the output,

ot = σ
(
W o(xt + ht−1) + bo

)
(12)

where W f , W i , W o , W represent the weights of the input of
the current eigenvector through each control gate and b f , bi ,
bo, b represent the bias terms of the control gate.

The developed LSTM network parameters, such as the
number of neurons, transfer function, and learning rate, are
determined based on trial and CoM height estimation error to
minimize the mean-square-error values to avoid over-or under-
fitting as shown in TABLE.I. The model implementation is
performed using MATLAB R2020b version (The Mathworks,
Inc., Natick, MA, USA) and GTX 1660 Ti GPU (1536 CUDA
cores, 1500 MHz base clock speed, and 12 GB RAM). Finally,
the performance of the trained model is evaluated by ten-fold
cross-validation.

The acceleration of lower limb joints is unstable during
walking, which leads to the mutation of joint angle, especially
for the hemiplegic subjects. The objective of stable walking
training is that the change of center of gravity of subjects
can have better periodicity in stable walking speed. In our
method, we assume the consecutive two gait cycles share the

TABLE I
PARAMETERS DESIGN VALUES FOR LSTM

same velocity, and the CoM height curve of the next gait cycle
is estimated using the kinematics of the previous gait cycle
immediately (within 10 ms) after the previous gait cycle is
completed. Therefore, if a patient varies his or her walking in
a specific cycle, the CoM height curve will be adjusted and
recalculated in the next gait cycle. In our low-speed walking
experiment, this delay did not have a significant influence on
the performance of our method.

The velocity break needs to be averted in the treadmill
waking training which means the waking velocity is stable in
training. Since the hip joint angle has only one peak in each
gait cycle, the continuous gait cycles are separated by the hip
joint angle and angular velocity. The kinematic information
of the previous cycle is treated as the input of the trained
LSTM model to estimate the CoM height data of the next gait
cycle. The CoM height estimation process takes 10ms, which
does not affect the real-time performance of the system. The
center of mass height estimation system sends NaturaGait a
full gait cycle height change data and path planning at a fixed
frequency, consisting of 100 position coordinates and 99-time
parameters.
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TABLE II
CHARACTERISTICS OF THE RECRUITED POST-STROKE SUBJECTS

III. EXPERIMENTS

A. Experimental Protocol

In the CoM height estimation model training and validation
experiments, we recruited eleven healthy subjects (two females
and nine males, age: 26.2 ±1.5 years, height: 171.2 ±4.3 cm,
weight: 67.3±7.1 kg) for the model training experiments. Data
from the eleven subjects were used for training and validation
of the CoM height estimation model in Matlab, other three
healthy subjects were recruited (one female, two males, age:
25.7±1.2 years, height: 169.2±3.8 cm, weight: 65.9±3.3 kg)
for the model testing experiments. The experiments were
approved by the local ethics committee and performed at
the Rehabilitation Engineering Laboratory in the University
of Shanghai for Science and Technology. All participants
provided written informed consent prior to the experiments.
The walking speeds were set from 0.4m/s to 1.8m/s with
an interval of 0.2m/s. The wide range of walking speed
covers all the common BWS training speeds and enhances
the accuracy of the LSTM network. The 3D trajectories of
14 reflective markers located on the lower limbs were recorded
using 12 infrared cameras motion analysis system (Vicon
MX13, Oxford Metrics, UK) at a sampling rate of 100 Hz. The
Plug-in Gait model was used for marker labeling, gaps in the
trajectories were filled with appropriate gap-filling algorithms
provided by Vicon Nexus.

In the CoM height estimation model testing and effec-
tiveness validation for BWS training, we recruited seven
hemiplegic subjects to walk with the BWS robot under the
CoM height estimation and constant partial BWS strategies.
According to the Lovett muscle strength scale, the selected
subjects were divided into two groups by their lower limb
muscle strength, Level IV and Level III. The characteristics
of the seven subjects can be seen in Table II. The validation
experiment scenes can be seen in Fig. 4. The subjects were
trained with the VCHA and constant BWS modes under
different walking speeds with the assistance of an experienced
physical therapist for two days (1.5h ∼ 2h/day) to evaluate
the differences between the BWS with constant and variable
CoM height strategies. The walking training speeds were set
as 0.8m/s, 1.0m/s, 1.2m/s.

Fig. 4. A hemiplegic subject using the NaturaGait-based body weight
support treadmill training system. The nine yellow points indicate the
placements of the reflective markers on both the paretic (a) and healthy
(b) sides of the subject. The remaining five markers are not in either view
of the above two sub-figures.

The hemiplegic subjects were fixed on the robot by a wear-
able harness and received constant BWS treadmill training.
The support ratios were 0.2 (Level IV) and 0.4 (Level III),
which means that the robot applied a constant vertical force
(20% and 40% of body weight) to the patient. The hemiplegic
subjects were asked to hold on side supports as soft as possible
to eliminate the influence from supports while ensuring their
safety.

The 20% and 40% partial BWS were set as the reference
strategy for the validation of the CoM height adjustment
strategy in further analysis. The foot pressure and gait phase
were measured by a wireless insole system (X4, Xsensor,
Calgary, Canada) at a sampling rate of 100 Hz. The kinematic
reference performance was recorded by Vicon MX13 at the
same sampling rate of the insole system. The nine yellow
points indicate the placements of the reflective markers on both
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Fig. 5. Hip and knee joint angles of five gait cycles estimation from
the locomotion recognition system compared to reference values from
motion capture system at 1m/s. (a) The errors in peak and valley of hip
joint angle are the system errors that can be eliminated by output gain
(yellow circle). (b) The curve tracking of the knee joint is not accurate
as of the hip joint, especially in the stance phase when the knee joint is
extended (green circle), but the knee joint trajectory feature shows stable
periodicity.

the paretic Fig. 4 (a) and healthy (b) sides of the subject. The
remaining five markers are not in either view of the two sub-
figures. Besides, two markers are located on the same vertical
level of venter and horizontal waist center for CoM height
validation.

B. Experimental Data Processing

The data of five stable gait cycles are processed to verify the
relationship between the calculation results of the locomotion
recognition system and the reference values. The root mean
square error (RMSE) E(θ) can be obtained by the following
formula:

E(θ) =
√√√√1

n
×

n∑
i=1

(θL RS − θr )2 (13)

where θL RS are the joint angles calculated by the locomotion
recognition system and θr are the reference angles collected
by the motion capture system.

A one-way analysis of variance (ANOVA) was conducted
to compare the effect of the different BWS strategies on
gait phase, kinematic performance, and foot pressure, with
significance set at p ≤ 0.05.

IV. RESULTS

A. Lower Limb Joint Angles Estimation

Three healthy subjects’ walking data are used for evaluating
the lower limb joint angles estimation. Fig. 5 indicates the
comparison of the lower limb joint angles in five stable gait
cycles calculated by the locomotion recognition system and

Fig. 6. The real-time CoM estimation by LSTM neural networks
compared to reference values from the motion capture system with a
healthy subject walking at 1 m/s.

motion capture system under the walking speed of 1m/s.
Compared to the reference values, the RMSEs of the hip and
knee joint angles obtained from the locomotion recognition
system are 0.53◦ and 1.32◦. The mean errors of peak and
valley values in five gait cycles of the hip joint are 1.7◦,
which accounts for less than 4.82% of the hip joint angle
range (as shown in yellow circles in Fig. 5(a)). In the rising
and falling edge of joint angles trajectories, whose slopes
are the joint velocities by backward difference calculation of
angles trajectories, the curve tracking of the hip joint is more
accurate than the knee joint by 20%, especially in the stance
phase when the knee joint is extended (as shown in the green
circle in Fig. 5(b)) for supporting the whole body weight. The
RMSE of knee extension in the stance phase is 2.6◦. However,
considering the repeatability of joint error in this phase, it can
be handled as an inherent system error in further application.

B. CoM Height Estimation

Fig. 6 shows the comparison between the CoM height
normalized by the body height of a healthy subject (height
179 cm, leg-body height ratio 0.61) from the motion capture
system and the one estimated from the proposed LSTM net-
work during five continuous gait cycles at the walking speed of
1m/s. Notice that, the mean normalized displacement of the
five gait cycles is 0.039. Compared to the reference values,
the RMSE of the CoM height estimated by the trained LSTM
is 3.19% (estimation err/reference CoM height range). The
results demonstrate that the CoM height adjustment strategy
with the LSTM network can effectively estimate the CoM
height.

C. Gait Phase Improvement

The stance phases of the normal person’s two sides have
approximately the same duration in the over-ground walking,
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Fig. 7. Gait phase comparison between the constant partial BWS and variable CoM height adjustment strategy. H: paretic side, U: non-paretic side.
The number of the phases refers to gait percentage. The adaptive CoM height adjustment significantly improved the standing phase of the paretic
side of the patients and also improved the symmetry of the gait on both sides. The subphases of stance are extended at different levels. Especially,
the load-response and mid-stance are significantly improved by more than 5.3% of the gait percentage. *significant, and p < 0.05.

while the stance phase of the paretic side is generally shorter
than that of the healthy side due to the poor supporting ability
of the injured side. Fig. 7 shows the gait phase comparison
between the constant 20% partial BWS and CoM height
adjustment strategy. Comparing the two body weight support
strategies, the adaptive CoM height adjustment significantly
increased the standing phase of the paretic side of the patients
by 14.6% of the gait cycle (p < 0.01) and thus improved the
symmetry of the gait on both sides. Further analysis of the data
reveals that among the three subphases of stance, the middle
stance is the most significant ( p < 0.05), increasing by 25%
one that undergoes the most significant (p < 0.05) increase
(25%), suggesting that CoM height adjustment is effective in
providing stabilizing assistance to patients during standing on
the injured side. While the standing stage is prolonged, the
swing stage is shortened. The mean difference between the
two swing stages under constant BWS is 4.5% larger than that
of CoM height adjustment in the whole gait cycle. This gait
asymmetry is clearly observable during the walking training.

Data analysis found that the two body weight support
strategies also have no significantly different effect on the
non-paretic side. Except for the pre-swing phase, the pro-
portion of other gait phases increased by 0.63% of the gait
cycle, which is not significant (p = 0.08) for observation in
walking.

D. Kinematic Parameters With Adaptive
CoM Height Adjustment

To evaluate the different effects of the constant BWS and the
CoM height adjustment strategies on kinematic performance,
the paretic side’s hip, knee joint angles of the hemiplegic sub-
jects and healthy control group were recorded for comparison.
Fig. 8 shows the comparison of the hip and knee joints angles
(mean±SD) of hemiplegic subjects in two groups and healthy
subjects under the two BWS strategies, respectively (twenty
continuous gait cycles at 1m/s). The CoM height adjustment
increases the mean hip and knee joints’ range of motion of
four subjects in the muscle strength Level IV group by 38.23%
and 27.48%, respectively. The range of motion improvement

of hip (29.61%) and knee (23.19%) joints can also be found
in the Level III group. In general, the significant ascents
(p < 0.01) of seven subjects’ range of motion of hip and knee
were 34.54% and 25.64%, respectively. Apart from the joint
angle of lower limbs, the knee joint velocity is improved by
20◦/s per gait cycle phase in the middle stance and pre-swing
phase. The extension velocity improvement demonstrates that
the knee joint is more flexible with less impedance under
the CoM height adjustment training. For the healthy subjects,
there is no significant difference (p = 0.1) in joint angles
under the two BWS strategies, althought the hip and knee
angles’ mean range of motion are increased under VCHA
by 10.31% and 6.58% compared with constant BWS, respec-
tively. In the hip versus knee angle profiles, the heel strike
transition of hemiplegic subjects (Level III and IV) is more
stable with sufficient knee flexion under the VCHA strategy.
For the healthy subjects, the two training strategies have no
significantly different effect on the lower limb joints range of
motion. Although there is knee flexion in the heel strike, the
knee joint showed a relative delay under constant partial BWS,
while the hip and knee motion under VCHA was more in line
with a normal gait as shown in the hip versus knee angle
profiles.

CoM height is an essential evaluation indicator for BWS
treadmill training. The direct CoM height analysis lacks com-
parability because body height determines the mean CoM
height. We took the CoM height to body height ratio as a
parameter in data processing for analysis. The CoM height
trajectory in a gait cycle is usually a peak-peak curve as
shown in Fig. 6. The constant BWS training strategy fails to
support the subjects to obtain a symmetrical CoM height as
non-disabled subjects. The difference between the two peaks
height to body height ratio of two groups under the constant
BWS training is 0.043 and 0.021, while the CoM height to
body height ratio adjustment can decrease the difference to
0.005 (third row of Fig. 8). The significant differences of the
CoM to body height ratio with constant BWS and with CoM
height adjustment were calculated through a one-way ANOVA
(p < 0.05). The CoM height regulation by adaptive adjustment
strategy is closer to the mean values of the 14 non-disabled
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Fig. 8. Comparison of kinematic performance in the paretic side of subjects in Level IV, Level III and healthy subjects group during variable CoM
height adjustment (VCHA) and constant BWS treadmill training. From top to bottom, it shows hip, knee joint angle, and CoM to body height ratio.
The regulation strategy improves the hip and knee joints’ range of motion and the knee joint veolocity in the middle stance and pre-swing phase for
three subjects.

subjects. However, for the healthy subject, the mean CoM
height under VCHA is significantly higher than constant BWS
by 0.01 CoM to body height (p < 0.01). Besides, there a peak
CoM height is 15% of gait phase hysteresis under constant
BWS compared to VCHA.

E. Average Foot Pressure

Fig. 9 shows both sides’s foot pressure (mean+SD) of the
hemiplegic subject (S12) and a healthy subject (height: 167cm,
weight: 61kg) collected by the pressure measuring insoles
at constant BWS and the CoM height adjustment strategies.
For the hemiplegic subject, the maximum foot pressure in
common practice can be found in the middle of the stance
phase. Instead, the maximum foot pressure of the paretic
side appears in the pre-swing phase under the two strategies.
It is found that the CoM height adjustment increases the
maximum foot pressure by 45.67% compared to the constant
BWS strategy. The difference of stance phase length between
the paretic side and non-paretic side under the CoM height
adjustment decreases by 12.5% compared to the constant
BWS strategy (p < 0.05). Meanwhile, there is a significant
difference between the stance and swing phase of the healthy
side (p < 0.05). For the healthy subject, the gait phase
symmetry is promoted by 3.1% of a gait cycle under the
VCHA compared to the constant partial BWS while there is
no significant variation in mean foot pressure (p > 0.1).

V. DISCUSSION

The locomotion recognition system is the foundation of the
CoM height estimation strategy. The theoretical proof of the
convergence of the trained network for each subject was not
investigated. Through experiments for healthy young people
and hemiplegic subjects, the convergence was guaranteed,
the convergence error of the trained neural network was
bounded in a small range. For the training, the maximum
fitting error was 2.43mm for eleven healthy young people.
For the testing, the maximum fitting error was 3.37mm for
three healthy people. We also considered the experiment for
seven hemiplegic subjects, the maximum fitting error was
3.95mm. Despite some error between the calculated data by
the locomotion recognition system and the reference data,
the joint angle recognition results in Fig. 5(a, b) fully meet
our training model’s requirements and provides an accurate
height estimation of the CoM height. This research is mainly
investigating the nonlinear relationship between the lower limb
joint angles and CoM height in time sequences. The LSTM
network pays more attention to the periodicity of the input
signal, which does not need to qualify with a highly precise
measurement.

Gait disorders represent disabling symptoms in hemiplegic
disease [4]. The effectiveness of rehabilitation treatment with
BWS treadmill training has been demonstrated in patients with
stroke, and spinal cord injuries [5]. The most important finding
of this research is that the CoM height adjustment strategy with
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Fig. 9. (a) Hemiplegic subject: foot pressure (mean+SD) of hemiplegic and non-paretic side comparison between the constant partial BWS and
VCHA treadmill walking training. The VCHA strategy gives an extended stance phase match for the paretic side and decreases the overall foot
pressure. The less loading on the paretic side enables the lower joints to move with less resistance. (b) Healthy subject: foot pressure (mean+SD)
of two side comparison between the constant partial BWS (20%) and VCHA treadmill walking training. The VCHA strategy does not affect the gait
phase symmetry compared to the constant partial BWS.

motion capture of the non-paretic side significantly altered
kinematics of the hip and knee joints during the stance
phase, in addition to affecting the gait phase characteristics
of the stride cycle and foot pressure. To our knowledge,
this is the first attempt to adjust the CoM height on the
basis of the active movement of the non-paretic side for the
BWS treadmill training in post-stroke rehabilitation. The CoM
height adjustment proposed in this study is a pure position
control mode. With NaturaGait’s powerful driving capability
(rated lifting force of 1500N), subjects weighing between 50kg
and 120kg can follow the target CoM height on the CoM
height adjustment in the position loop. Constant partial BWS
is an impedance force control, which adjusts the height of
the man-machine connection by comparing the weight of the
target weight loss support and the difference in the force
sensor’s actual value between the rehabilitation robot and
the wearing harness. The BWSTT is mainly used to help
subjects with weak muscle strength achieve stable walking
training under the condition of reducing the load of the lower
limbs. Continuous walking with approximately periodic CoM
height guidance of BWS framework and the treadmill is an
effective method for lower limbs in hemiplegic rehabilitation.
Individuals with hemiplegia lack stability in walking, and this
stability leads to discontinuity in the constant partial BWS
training. The VCHA method actively adjusts the ideal CoM
height which supports the subjects to walk sustainably. Thus,
this method does not restrict the subject’s BWS walking but
is an orthopedic strategy for gait training.

It is clear from these results that significant changes occur,
most notably an increase in hip and knee range of motion
(Fig. 8), shorter swing phase, and more extended stance phase
of paretic side), longer stride duration (Fig. 6. The CoM height
adjustment strategy effectively improves the peak symmetry

of the same gait period. This peak symmetry demonstrates
the stability of the CoM during the subject’s walking process.
Also, it indicates that the height control of weight loss support
can effectively improve the paretic side’s active movement
ability. Compared with constant 20% BWS, the dynamic
adjustment of the CoM height in the standing period of the
paretic side is more beneficial to the strength rehabilitation of
the patient’s knee joint. It is also the reason why CoM height
adjustment can improve the range and speed of knee motion.

However, foot pressure results shown in Fig. 9 indicate that
the maximum foot pressure under CoM height adjustment is
less than constant BWS, which means that the paretic side
does not obtain enough impedance for joint active rehabili-
tation training. This low impedance for the paretic side is a
limitation of CoM height adjustment. The future work of CoM
height adjustment will define the CoM height support ratio or
combine CoM height adjustment with constant BWS to settle
this matter.

Regarding the comfort level of BWS training, the constant
weight support is easy to interfere with the gait of the sub-
jects’ paretic side [16]. However, there is load-free assistance
when dragged by the wearable harness. The gait affects the
metabolism and is responsible for fatigue increase during
treadmill training. The effects of gait on energy expenditure
and how to compare and evaluate different BWS strategies’
performance in this regard needs to be studied.

VI. CONCLUSION

This paper investigates a strategy for variable CoM height
adjustment to enhance the efficiency of BWS treadmill training
of hemiplegic patients after stroke. The strategy we propose
composes of a long-short term memory (LSTM) network and
a locomotion recognition system. The LSTM network takes
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the hip and knee joint angles of the hemiplegic patients’ non-
paretic side from the locomotion recognition system as input
signals and outputs the CoM height to a BWS treadmill train-
ing robot. The locomotion recognition system has been proved
to be accurate, with small RMSEs of the hip (0.53◦) and knee
(1.32◦). With the adaptive CoM height adjustment strategy,
the standing phase of the paretic side is increased by 14.6%
of the gait cycle. Besides, the hip and knee joints’ ranges
of motion are increased by 38.23% and 27.48%, respectively.
The difference between the two peaks under the constant
BWS training is decreased by 46.03%, which demonstrated
that the CoM height adjustment improves the gait stability.
Considering the walking performance is different according to
different ages, a comparative experiment will be carried out
on trained models using the young people and age-matched
population data of subjects respectively in the future.

ACKNOWLEDGMENT

The authors would like to thank C.R. Zhang, L. Xiao, and
P. Xu from Sunshine Rehabilitation Center, Shanghai, China,
for their contributions in experiments.

REFERENCES

[1] D. A. Bjanes and C. T. Moritz, “A robust encoding scheme for delivering
artificial sensory information via direct brain stimulation,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 27, no. 10, pp. 1994–2004, Oct. 2019.

[2] G. Pavei, F. Salis, A. Cereatti, and E. Bergamini, “Body center of
mass trajectory and mechanical energy using inertial sensors: A feasible
stride?” Gait Posture, vol. 80, pp. 199–205, Jul. 2020.

[3] E. De Keersmaecker et al., “The effect of optic flow speed on active
participation during robot-assisted treadmill walking in healthy adults,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 1, pp. 221–227,
Jan. 2020.

[4] E. Swinnen et al., “Walking with robot assistance: The influence of body
weight support on the trunk and pelvis kinematics,” Disab. Rehabil.,
Assistive Technol., vol. 10, no. 3, pp. 252–257, May 2015.

[5] P. Zhang, W. Zou, Y. Chen, and N. Yu, “Servo and force control with
improved robustness and accuracy for an active body weight support
system,” in Proc. IEEE Int. Conf. Adv. Intell. Mechtron., Jul. 2019,
pp. 601–605.

[6] K. Chua et al., “An exploratory clinical study on an automated,
speed-sensing treadmill prototype with partial body weight support for
hemiparetic gait rehabilitation in subacute and chronic stroke patients,”
Frontiers Neurol., vol. 11, p. 747, Jul. 2020.

[7] M. H. Rad and S. Behzadipour, “Design and implementation of a
new body weight support (BWS) system,” in Proc. Int. Conf. Robot.
Mechatronics, Oct. 2017, pp. 69–75.

[8] M. A. Ullah, H. Shafi, G. A. Khan, A. N. Malik, and I. Amjad, “The
effects of gait training with body weight support (BWS) with no body
weight support (no-BWS) in stroke patients,” J. Pak. Med. Assoc.,
vol. 67, no. 7, pp. 1094–1096, 2017.

[9] R. S. Gonçalves and H. I. Krebs, “MIT-Skywalker: Considerations on
the design of a body weight support system,” J. NeuroEng. Rehabil.,
vol. 14, no. 1, pp. 1–11, Dec. 2017.

[10] A. C. Dragunas and K. E. Gordon, “Body weight support impacts
lateral stability during treadmill walking,” J. Biomech., vol. 49, no. 13,
pp. 2662–2668, Sep. 2016.

[11] K. Dyer, B. King, and A. Herman, “A new body weight supported
treadmill device to measure kinetic response from spinal cord injury
animals,” in Proc. IEEE Annu. Northeast Bioeng. Conf., Apr. 2015,
pp. 1–2.

[12] K.-M. Lee and D. Wang, “Design analysis of a passive weight-support
lower-extremity-exoskeleton with compliant knee-joint,” in Proc. IEEE
Int. Conf. Robot. Automat., May 2015, pp. 5572–5577.

[13] H. Munawar and V. Patoglu, “Gravity-assist: A series elastic body weight
support system with inertia compensation,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Oct. 2016, pp. 3036–3041.

[14] J. A. Mercer and C. Chona, “Stride length–velocity relationship during
running with body weight support,” J. Sport Health Sci., vol. 4, no. 4,
pp. 391–395, Dec. 2015.

[15] H. Zhang, F. Mo, L. Wang, M. Behr, and P. J. Arnoux, “A framework of
a lower limb musculoskeletal model with implemented natural propri-
oceptive feedback and its progressive evaluation,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 28, no. 8, pp. 1866–1875, Aug. 2020.

[16] M. Neal, N. Fleming, L. Eberman, K. Games, and J. Vaughan,
“Effect of body-weight-support running on lower-limb biomechanics,”
J. Orthopaedic Sports Phys. Therapy, vol. 46, no. 9, pp. 784–793,
Sep. 2016.

[17] M. Bannwart, S. L. Bayer, N. König Ignasiak, M. Bolliger, G. Rauter,
and C. A. Easthope, “Mediolateral damping of an overhead body weight
support system assists stability during treadmill walking,” J. NeuroEng.
Rehabil., vol. 17, no. 1, pp. 1–15, Dec. 2020.

[18] D. J. Lura, M. C. Venglar, A. J. van Duijn, and K. R. Csavina, “Body
weight supported treadmill vs. overground gait training for acute stroke
gait rehabilitation,” Int. J. Rehabil. Res., vol. 42, no. 3, pp. 270–274,
2019.

[19] Y.-R. Mao et al., “The effect of body weight support treadmill training
on gait recovery, proximal lower limb motor pattern, and balance in
patients with subacute stroke,” BioMed Res. Int., vol. 2015, pp. 1–10,
2015.

[20] J. Taborri, S. Rossi, E. Palermo, F. Patane, and P. Cappa, “A novel HMM
distributed classifier for the detection of gait phases by means of a wear-
able inertial sensor network,” Sensors, vol. 14, no. 9, pp. 16212–16234,
2014.

[21] N. Cespedes, M. Munera, C. Gomez, and C. A. Cifuentes, “Social
human-robot interaction for gait rehabilitation,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 28, no. 6, pp. 1299–1307, Jun. 2020.

[22] M. Iosa, G. Morone, and M. Bragoni, “Driving electromechanically
assisted gait trainer for people with stroke,” J. Rehabil. Res. Develop.,
vol. 48, no. 2, pp. 135–145, 2011.

[23] A. Schicketmueller, G. Rose, and M. Hofmann, “Feasibility of a sensor-
based gait event detection algorithm for triggering functional electrical
stimulation during robot-assisted gait training,” Sensors, vol. 19, no. 21,
p. 4804, Nov. 2019.

[24] A. Naidu, S. A. Graham, and D. A. Brown, “Fore-aft resistance applied
at the center of mass using a novel robotic interface proportionately
increases propulsive force generation in healthy nonimpaired individuals
walking at a constant speed,” J. NeuroEng. Rehabil., vol. 16, no. 1,
pp. 1–11, Dec. 2019.

[25] K.-R. Mun, Z. Guo, and H. Yu, “Restriction of pelvic lateral and
rotational motions alters lower limb kinematics and muscle activation
pattern during over-ground walking,” Med. Biol. Eng. Comput., vol. 54,
no. 11, pp. 1621–1629, Nov. 2016.

[26] L. Tesio and V. Rota, “The motion of body center of mass during
walking: A review oriented to clinical applications,” Frontiers Neurol.,
vol. 10, p. 999, Sep. 2019.

[27] F. Fallahtafti, C. M. Pfeifer, T. W. Buster, and J. M. Burnfield, “Effect
of motor-assisted elliptical training speed and body weight support
on center of pressure movement variability,” Gait Posture, vol. 81,
pp. 138–143, Sep. 2020.

[28] P. Esser, H. Dawes, J. Collett, and K. Howells, “IMU: Inertial sens-
ing of vertical CoM movement,” J. Biomechanics, vol. 42, no. 10,
pp. 1578–1581, Jul. 2009.

[29] D. Steins, I. Sheret, H. Dawes, P. Esser, and J. Collett, “A smart device
inertial-sensing method for gait analysis,” J. Biomechanics, vol. 47,
no. 15, pp. 3780–3785, Nov. 2014.

[30] T. Zhen, L. Yan, and P. Yuan, “Walking gait phase detection based on
acceleration signals using LSTM-DNN algorithm,” Algorithms, vol. 12,
no. 12, p. 253, Nov. 2019.

[31] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, long
short-term memory, fully connected deep neural networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 4580–4584.

[32] B. Su and E. M. Gutierrez-Farewik, “Gait trajectory and gait phase
prediction based on an LSTM network,” Sensors, vol. 20, no. 24,
p. 7127, Dec. 2020.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


